Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Postischemic deactivation of cardiac aldose reductase: role of glutathione S-transferase P and glutaredoxin in regeneration of reduced thiols from sulfenic acids.

Identifieur interne : 000A08 ( Main/Exploration ); précédent : 000A07; suivant : 000A09

Postischemic deactivation of cardiac aldose reductase: role of glutathione S-transferase P and glutaredoxin in regeneration of reduced thiols from sulfenic acids.

Auteurs : Karin Wetzelberger [États-Unis] ; Shahid P. Baba ; Mahesh Thirunavukkarasu ; Ye-Shih Ho ; Nilanjana Maulik ; Oleg A. Barski ; Daniel J. Conklin ; Aruni Bhatnagar

Source :

RBID : pubmed:20538586

Descripteurs français

English descriptors

Abstract

Aldose reductase (AR) is a multifunctional enzyme that catalyzes the reduction of glucose and lipid peroxidation-derived aldehydes. During myocardial ischemia, the activity of AR is increased due to the oxidation of its cysteine residues to sulfenic acids. It is not known, however, whether the activated, sulfenic form of the protein (AR-SOH) is converted back to its reduced, unactivated state (AR-SH). We report here that in perfused mouse hearts activation of AR during 15 min of global ischemia is completely reversed by 30 min of reperfusion. During reperfusion, AR-SOH was converted to a mixed disulfide (AR-SSG). Deactivation of AR and the appearance of AR-SSG during reperfusion were delayed in hearts of mice lacking glutathione S-transferase P (GSTP). In vitro, GSTP accelerated glutathiolation and inactivation of AR-SOH. Reduction of AR-SSG to AR-SH was facilitated by glutaredoxin (GRX). Ischemic activation of AR was increased in GRX-null hearts but was attenuated in the hearts of cardiospecific GRX transgenic mice. Incubation of AR-SSG with GRX led to the regeneration of the reduced form of the enzyme. In ischemic cardiospecific AR transgenic hearts, AR was co-immunoprecipitated with GSTP, whereas in reperfused hearts, the association of AR with GRX was increased. These findings suggest that upon reperfusion of the ischemic heart AR-SOH is converted to AR-SSG via GSTP-assisted glutathiolation. AR-SSG is then reduced by GRX to AR-SH. Sequential catalysis by GSTP and GRX may be a general redox switching mechanism that regulates the reduction of protein sulfenic acids to cysteines.

DOI: 10.1074/jbc.M110.146423
PubMed: 20538586
PubMed Central: PMC2924019


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Postischemic deactivation of cardiac aldose reductase: role of glutathione S-transferase P and glutaredoxin in regeneration of reduced thiols from sulfenic acids.</title>
<author>
<name sortKey="Wetzelberger, Karin" sort="Wetzelberger, Karin" uniqKey="Wetzelberger K" first="Karin" last="Wetzelberger">Karin Wetzelberger</name>
<affiliation wicri:level="1">
<nlm:affiliation>Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky 40202, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky 40202</wicri:regionArea>
<wicri:noRegion>Kentucky 40202</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Baba, Shahid P" sort="Baba, Shahid P" uniqKey="Baba S" first="Shahid P" last="Baba">Shahid P. Baba</name>
</author>
<author>
<name sortKey="Thirunavukkarasu, Mahesh" sort="Thirunavukkarasu, Mahesh" uniqKey="Thirunavukkarasu M" first="Mahesh" last="Thirunavukkarasu">Mahesh Thirunavukkarasu</name>
</author>
<author>
<name sortKey="Ho, Ye Shih" sort="Ho, Ye Shih" uniqKey="Ho Y" first="Ye-Shih" last="Ho">Ye-Shih Ho</name>
</author>
<author>
<name sortKey="Maulik, Nilanjana" sort="Maulik, Nilanjana" uniqKey="Maulik N" first="Nilanjana" last="Maulik">Nilanjana Maulik</name>
</author>
<author>
<name sortKey="Barski, Oleg A" sort="Barski, Oleg A" uniqKey="Barski O" first="Oleg A" last="Barski">Oleg A. Barski</name>
</author>
<author>
<name sortKey="Conklin, Daniel J" sort="Conklin, Daniel J" uniqKey="Conklin D" first="Daniel J" last="Conklin">Daniel J. Conklin</name>
</author>
<author>
<name sortKey="Bhatnagar, Aruni" sort="Bhatnagar, Aruni" uniqKey="Bhatnagar A" first="Aruni" last="Bhatnagar">Aruni Bhatnagar</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20538586</idno>
<idno type="pmid">20538586</idno>
<idno type="doi">10.1074/jbc.M110.146423</idno>
<idno type="pmc">PMC2924019</idno>
<idno type="wicri:Area/Main/Corpus">000A03</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000A03</idno>
<idno type="wicri:Area/Main/Curation">000A03</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000A03</idno>
<idno type="wicri:Area/Main/Exploration">000A03</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Postischemic deactivation of cardiac aldose reductase: role of glutathione S-transferase P and glutaredoxin in regeneration of reduced thiols from sulfenic acids.</title>
<author>
<name sortKey="Wetzelberger, Karin" sort="Wetzelberger, Karin" uniqKey="Wetzelberger K" first="Karin" last="Wetzelberger">Karin Wetzelberger</name>
<affiliation wicri:level="1">
<nlm:affiliation>Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky 40202, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky 40202</wicri:regionArea>
<wicri:noRegion>Kentucky 40202</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Baba, Shahid P" sort="Baba, Shahid P" uniqKey="Baba S" first="Shahid P" last="Baba">Shahid P. Baba</name>
</author>
<author>
<name sortKey="Thirunavukkarasu, Mahesh" sort="Thirunavukkarasu, Mahesh" uniqKey="Thirunavukkarasu M" first="Mahesh" last="Thirunavukkarasu">Mahesh Thirunavukkarasu</name>
</author>
<author>
<name sortKey="Ho, Ye Shih" sort="Ho, Ye Shih" uniqKey="Ho Y" first="Ye-Shih" last="Ho">Ye-Shih Ho</name>
</author>
<author>
<name sortKey="Maulik, Nilanjana" sort="Maulik, Nilanjana" uniqKey="Maulik N" first="Nilanjana" last="Maulik">Nilanjana Maulik</name>
</author>
<author>
<name sortKey="Barski, Oleg A" sort="Barski, Oleg A" uniqKey="Barski O" first="Oleg A" last="Barski">Oleg A. Barski</name>
</author>
<author>
<name sortKey="Conklin, Daniel J" sort="Conklin, Daniel J" uniqKey="Conklin D" first="Daniel J" last="Conklin">Daniel J. Conklin</name>
</author>
<author>
<name sortKey="Bhatnagar, Aruni" sort="Bhatnagar, Aruni" uniqKey="Bhatnagar A" first="Aruni" last="Bhatnagar">Aruni Bhatnagar</name>
</author>
</analytic>
<series>
<title level="j">The Journal of biological chemistry</title>
<idno type="eISSN">1083-351X</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aldehyde Reductase (metabolism)</term>
<term>Animals (MeSH)</term>
<term>Cysteine (metabolism)</term>
<term>Glutaredoxins (metabolism)</term>
<term>Glutathione Transferase (metabolism)</term>
<term>Male (MeSH)</term>
<term>Mice (MeSH)</term>
<term>Mice, Inbred C57BL (MeSH)</term>
<term>Myocardial Ischemia (enzymology)</term>
<term>Myocardial Ischemia (metabolism)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Sulfenic Acids (metabolism)</term>
<term>Sulfhydryl Compounds (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acides sulféniques (métabolisme)</term>
<term>Aldose reductase (métabolisme)</term>
<term>Animaux (MeSH)</term>
<term>Cystéine (métabolisme)</term>
<term>Glutarédoxines (métabolisme)</term>
<term>Glutathione transferase (métabolisme)</term>
<term>Ischémie myocardique (enzymologie)</term>
<term>Ischémie myocardique (métabolisme)</term>
<term>Mâle (MeSH)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Souris (MeSH)</term>
<term>Souris de lignée C57BL (MeSH)</term>
<term>Thiols (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Aldehyde Reductase</term>
<term>Cysteine</term>
<term>Glutaredoxins</term>
<term>Glutathione Transferase</term>
<term>Sulfenic Acids</term>
<term>Sulfhydryl Compounds</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Ischémie myocardique</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Myocardial Ischemia</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Myocardial Ischemia</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acides sulféniques</term>
<term>Aldose reductase</term>
<term>Cystéine</term>
<term>Glutarédoxines</term>
<term>Glutathione transferase</term>
<term>Ischémie myocardique</term>
<term>Thiols</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Male</term>
<term>Mice</term>
<term>Mice, Inbred C57BL</term>
<term>Oxidation-Reduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Mâle</term>
<term>Oxydoréduction</term>
<term>Souris</term>
<term>Souris de lignée C57BL</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Aldose reductase (AR) is a multifunctional enzyme that catalyzes the reduction of glucose and lipid peroxidation-derived aldehydes. During myocardial ischemia, the activity of AR is increased due to the oxidation of its cysteine residues to sulfenic acids. It is not known, however, whether the activated, sulfenic form of the protein (AR-SOH) is converted back to its reduced, unactivated state (AR-SH). We report here that in perfused mouse hearts activation of AR during 15 min of global ischemia is completely reversed by 30 min of reperfusion. During reperfusion, AR-SOH was converted to a mixed disulfide (AR-SSG). Deactivation of AR and the appearance of AR-SSG during reperfusion were delayed in hearts of mice lacking glutathione S-transferase P (GSTP). In vitro, GSTP accelerated glutathiolation and inactivation of AR-SOH. Reduction of AR-SSG to AR-SH was facilitated by glutaredoxin (GRX). Ischemic activation of AR was increased in GRX-null hearts but was attenuated in the hearts of cardiospecific GRX transgenic mice. Incubation of AR-SSG with GRX led to the regeneration of the reduced form of the enzyme. In ischemic cardiospecific AR transgenic hearts, AR was co-immunoprecipitated with GSTP, whereas in reperfused hearts, the association of AR with GRX was increased. These findings suggest that upon reperfusion of the ischemic heart AR-SOH is converted to AR-SSG via GSTP-assisted glutathiolation. AR-SSG is then reduced by GRX to AR-SH. Sequential catalysis by GSTP and GRX may be a general redox switching mechanism that regulates the reduction of protein sulfenic acids to cysteines.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20538586</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>09</Month>
<Day>30</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1083-351X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>285</Volume>
<Issue>34</Issue>
<PubDate>
<Year>2010</Year>
<Month>Aug</Month>
<Day>20</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of biological chemistry</Title>
<ISOAbbreviation>J Biol Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>Postischemic deactivation of cardiac aldose reductase: role of glutathione S-transferase P and glutaredoxin in regeneration of reduced thiols from sulfenic acids.</ArticleTitle>
<Pagination>
<MedlinePgn>26135-48</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1074/jbc.M110.146423</ELocationID>
<Abstract>
<AbstractText>Aldose reductase (AR) is a multifunctional enzyme that catalyzes the reduction of glucose and lipid peroxidation-derived aldehydes. During myocardial ischemia, the activity of AR is increased due to the oxidation of its cysteine residues to sulfenic acids. It is not known, however, whether the activated, sulfenic form of the protein (AR-SOH) is converted back to its reduced, unactivated state (AR-SH). We report here that in perfused mouse hearts activation of AR during 15 min of global ischemia is completely reversed by 30 min of reperfusion. During reperfusion, AR-SOH was converted to a mixed disulfide (AR-SSG). Deactivation of AR and the appearance of AR-SSG during reperfusion were delayed in hearts of mice lacking glutathione S-transferase P (GSTP). In vitro, GSTP accelerated glutathiolation and inactivation of AR-SOH. Reduction of AR-SSG to AR-SH was facilitated by glutaredoxin (GRX). Ischemic activation of AR was increased in GRX-null hearts but was attenuated in the hearts of cardiospecific GRX transgenic mice. Incubation of AR-SSG with GRX led to the regeneration of the reduced form of the enzyme. In ischemic cardiospecific AR transgenic hearts, AR was co-immunoprecipitated with GSTP, whereas in reperfused hearts, the association of AR with GRX was increased. These findings suggest that upon reperfusion of the ischemic heart AR-SOH is converted to AR-SSG via GSTP-assisted glutathiolation. AR-SSG is then reduced by GRX to AR-SH. Sequential catalysis by GSTP and GRX may be a general redox switching mechanism that regulates the reduction of protein sulfenic acids to cysteines.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wetzelberger</LastName>
<ForeName>Karin</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky 40202, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Baba</LastName>
<ForeName>Shahid P</ForeName>
<Initials>SP</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Thirunavukkarasu</LastName>
<ForeName>Mahesh</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ho</LastName>
<ForeName>Ye-Shih</ForeName>
<Initials>YS</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Maulik</LastName>
<ForeName>Nilanjana</ForeName>
<Initials>N</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Barski</LastName>
<ForeName>Oleg A</ForeName>
<Initials>OA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Conklin</LastName>
<ForeName>Daniel J</ForeName>
<Initials>DJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bhatnagar</LastName>
<ForeName>Aruni</ForeName>
<Initials>A</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>P20 RR024489</GrantID>
<Acronym>RR</Acronym>
<Agency>NCRR NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>HL78825</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 HL059378</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 HL089380</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>HL89380</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>HL55477</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P01 HL078825</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>HL59378</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>RR024489</GrantID>
<Acronym>RR</Acronym>
<Agency>NCRR NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>HL893802S1</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 HL055477</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>06</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Biol Chem</MedlineTA>
<NlmUniqueID>2985121R</NlmUniqueID>
<ISSNLinking>0021-9258</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D013434">Sulfenic Acids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D013438">Sulfhydryl Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.1.1.21</RegistryNumber>
<NameOfSubstance UI="D000449">Aldehyde Reductase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.5.1.18</RegistryNumber>
<NameOfSubstance UI="D005982">Glutathione Transferase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>K848JZ4886</RegistryNumber>
<NameOfSubstance UI="D003545">Cysteine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000449" MajorTopicYN="N">Aldehyde Reductase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003545" MajorTopicYN="N">Cysteine</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005982" MajorTopicYN="N">Glutathione Transferase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008810" MajorTopicYN="N">Mice, Inbred C57BL</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017202" MajorTopicYN="N">Myocardial Ischemia</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013434" MajorTopicYN="N">Sulfenic Acids</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013438" MajorTopicYN="N">Sulfhydryl Compounds</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>6</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>6</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>10</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20538586</ArticleId>
<ArticleId IdType="pii">M110.146423</ArticleId>
<ArticleId IdType="doi">10.1074/jbc.M110.146423</ArticleId>
<ArticleId IdType="pmc">PMC2924019</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biochem J. 2009 Jan 15;417(2):513-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18800966</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circulation. 2008 Nov 4;118(19):1970-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18936326</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Heart Circ Physiol. 2009 Feb;296(2):H333-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19060123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biol Interact. 2009 Mar 16;178(1-3):242-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19041636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Heart Circ Physiol. 2009 May;296(5):H1586-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19270193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pharmacol Exp Ther. 2009 Nov;331(2):456-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19696094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2008 Nov;10(11):1941-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18774901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 2002 Feb;16(2):243-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11772943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 May 14;99(10):6690-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11983871</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circ Res. 2002 Aug 9;91(3):240-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12169650</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2003 Jan;28(1):32-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12517450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Apr 25;300(5619):653-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12714748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Jun 12;423(6941):769-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12802338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Jun 12;423(6941):773-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12802339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2003 Sep 2;42(34):10060-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12939134</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Oct 30;425(6961):980-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14586471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Nov 14;278(46):45352-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12954610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Pharmacol Toxicol. 2004;44:325-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14744249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Mar 16;101(11):3780-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15004285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 1988 Aug;82(2):476-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2841353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circ Res. 1989 Sep;65(3):607-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2548761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Pharmacol. 1990 Mar 15;39(6):1115-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2157439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 1993 Apr;14(4):421-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8385646</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 1993 Aug;92(2):1025-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8394382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1994 Feb 15;91(4):1480-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8108434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1994 Nov 4;269(44):27670-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7961686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 1995 Aug;96(2):1066-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7635943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1995 Aug 11;270(32):18797-803</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7642530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Apr 28;95(9):5275-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9560266</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Prog Cardiovasc Dis. 1998 May-Jun;40(6):477-516</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9647607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1999 Jan 5;38(1):42-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9890881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1999 Mar 1;18(5):1321-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10064598</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Sep 28;96(20):11507-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10500207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Dec 28;101(52):17982-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15604151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 2005 May;19(7):795-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15746188</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Endocr Rev. 2005 May;26(3):380-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15814847</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2005 Jul 7;353(1):9-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16000351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Jun 2;281(22):15110-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16567803</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2006 Jul 18;45(28):8476-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16834321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Aug 29;103(35):13086-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16916935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>IUBMB Life. 2007 Jan;59(1):21-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17365176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2007 Jul 1;405(1):95-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17381426</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Aug 14;104(33):13519-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17684094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2007 Sep;6(9):1473-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17569890</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2008 Jan 8;47(1):358-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18078330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Cell Cardiol. 2008 Feb;44(2):261-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17976641</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2008 Apr 15;411(2):457-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18237276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Apr 4;283(14):9101-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18223294</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2008 Jul 4;371(3):490-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18452709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Jan 2;284(1):436-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18990698</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Baba, Shahid P" sort="Baba, Shahid P" uniqKey="Baba S" first="Shahid P" last="Baba">Shahid P. Baba</name>
<name sortKey="Barski, Oleg A" sort="Barski, Oleg A" uniqKey="Barski O" first="Oleg A" last="Barski">Oleg A. Barski</name>
<name sortKey="Bhatnagar, Aruni" sort="Bhatnagar, Aruni" uniqKey="Bhatnagar A" first="Aruni" last="Bhatnagar">Aruni Bhatnagar</name>
<name sortKey="Conklin, Daniel J" sort="Conklin, Daniel J" uniqKey="Conklin D" first="Daniel J" last="Conklin">Daniel J. Conklin</name>
<name sortKey="Ho, Ye Shih" sort="Ho, Ye Shih" uniqKey="Ho Y" first="Ye-Shih" last="Ho">Ye-Shih Ho</name>
<name sortKey="Maulik, Nilanjana" sort="Maulik, Nilanjana" uniqKey="Maulik N" first="Nilanjana" last="Maulik">Nilanjana Maulik</name>
<name sortKey="Thirunavukkarasu, Mahesh" sort="Thirunavukkarasu, Mahesh" uniqKey="Thirunavukkarasu M" first="Mahesh" last="Thirunavukkarasu">Mahesh Thirunavukkarasu</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Wetzelberger, Karin" sort="Wetzelberger, Karin" uniqKey="Wetzelberger K" first="Karin" last="Wetzelberger">Karin Wetzelberger</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A08 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000A08 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:20538586
   |texte=   Postischemic deactivation of cardiac aldose reductase: role of glutathione S-transferase P and glutaredoxin in regeneration of reduced thiols from sulfenic acids.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:20538586" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020